1,201 research outputs found

    Quantum Sensor Miniaturization

    Full text link
    The classical bound on image resolution defined by the Rayleigh limit can be beaten by exploiting the properties of quantum mechanical entanglement. If entangled photons are used as signal states, the best possible resolution is instead given by the Heisenberg limit, an improvement proportional to the number of entangled photons in the signal. In this paper we present a novel application of entanglement by showing that the resolution obtained by an imaging system utilizing separable photons can be achieved by an imaging system making use of entangled photons, but with the advantage of a smaller aperture, thus resulting in a smaller and lighter system. This can be especially valuable in satellite imaging where weight and size play a vital role.Comment: 3 pages, 1 figure. Accepted for publication in Photonics Technology Letter

    Statistical equilibrium in simple exchange games I

    Get PDF
    Simple stochastic exchange games are based on random allocation of finite resources. These games are Markov chains that can be studied either analytically or by Monte Carlo simulations. In particular, the equilibrium distribution can be derived either by direct diagonalization of the transition matrix, or using the detailed balance equation, or by Monte Carlo estimates. In this paper, these methods are introduced and applied to the Bennati-Dragulescu-Yakovenko (BDY) game. The exact analysis shows that the statistical-mechanical analogies used in the previous literature have to be revised.Comment: 11 pages, 3 figures, submitted to EPJ

    A rapid and simple uhplc-ms/ms method for quantification of plasma globotriaosylsphingosine (Lyso-gb3)

    Get PDF
    Fabry disease (FD) is a rare X-linked lysosomal storage disorder caused by α-galactosidase A gene (GLA) mutations, resulting in loss of activity of the lysosomal hydrolase, α-galactosidase A (α-Gal A). As a result, the main glycosphingolipid substrates, globotriaosylceramide (Gb3) and globotriaosylsphingosine (lyso-Gb3), accumulate in plasma, urine, and tissues. Here, we propose a simple, fast, and sensitive method for plasma quantification of lyso-Gb3, the most promising secondary screening target for FD. Assisted protein precipitation with methanol using Phree cartridges was performed as sample pre-treatment and plasma concentrations were measured using UHPLC-MS/MS operating in MRM positive electrospray ionization. Method validation provided ex-cellent results for the whole calibration range (0.25–100 ng/mL). Intra-assay and inter-assay accuracy and precision (CV%) were calculated as <10%. The method was successfully applied to 55 plasma samples obtained from 34 patients with FD, 5 individuals carrying non-relevant polymorphisms of the GLA gene, and 16 healthy controls. Plasma lyso-Gb3 concentrations were larger in both male and female FD groups compared to healthy subjects (p < 0.001). Normal levels of plasma lyso-Gb3 were observed for patients carrying non-relevant mutations of the GLA gene compared to the control group (p = 0.141). Dropping the lower limit of quantification (LLOQ) to 0.25 ng/mL allowed us to set the optimal plasma lyso-Gb3 cut-off value between FD patients and healthy controls at 0.6 ng/mL, with a sensitivity of 97.1%, specificity of 100%, and accuracy of 0.998 expressed by the area under the ROC curve (C.I. 0.992 to 1.000, p-value < 0.001). Based on the results obtained, this method can be a reliable tool for early phenotypic assignment, assessing diagnoses in patients with borderline GalA activity, and confirming non-relevant mutations of the GLA gene

    A Two-Component regulatory system with opposite effects on glycopeptide antibiotic biosynthesis and resistance

    Get PDF
    The glycopeptide A40926, produced by the actinomycete Nonomuraea gerenzanensis, is the precursor of dalbavancin, a second-generation glycopeptide antibiotic approved for clinical use in the USA and Europe in 2014 and 2015, respectively. The final product of the biosynthetic pathway is an O-acetylated form of A40926 (acA40926). Glycopeptide biosynthesis in N. gerenzanensis is dependent upon the dbv gene cluster that encodes, in addition to the two essential positive regulators Dbv3 and Dbv4, the putative members of a two-component signal transduction system, specifically the response regulator Dbv6 and the sensor kinase Dbv22. The aim of this work was to assign a role to these two genes. Our results demonstrate that deletion of dbv22 leads to an increased antibiotic production with a concomitant reduction in glycopeptide resistance. Deletion of dbv6 results in a similar phenotype, although the effects are not as strong as in the Δdbv22 mutant. Consistently, quantitative RT-PCR analysis showed that Dbv6 and Dbv22 negatively regulate the regulatory genes (dbv3 and dbv4), as well as some dbv biosynthetic genes (dbv23 and dbv24), whereas Dbv6 and Dbv22 positively regulate transcription of the single, cluster-associated resistance gene. Finally, we demonstrate that exogenously added acA40926 and its precursor A40926 can modulate transcription of dbv genes but with an opposite extent: A40926 strongly stimulates transcription of the Dbv6/Dbv22 target genes while acA40926 has a neutral or negative effect on transcription of those genes. We propose a model in which glycopeptide biosynthesis in N. gerenzanensis is modulated through a positive feedback by the biosynthetic precursor A40926 and a negative feedback by the final product acA40926. In addition to previously reported control systems, this sophisticated control loop might help the producing strain cope with the toxicity of its own product. This work, besides leading to improved glycopeptide producing strains, enlarges our knowledge on the regulation of glycopeptide biosynthesis in actinomycetes, setting N. gerenzanensis and its two-component system Dbv6-Dbv22 apart from other glycopeptide producers

    Thermal conductivity of one-dimensional lattices with self-consistent heat baths: a heuristic derivation

    Full text link
    We derive the thermal conductivities of one-dimensional harmonic and anharmonic lattices with self-consistent heat baths (BRV lattice) from the Single-Mode Relaxation Time (SMRT) approximation. For harmonic lattice, we obtain the same result as previous works. However, our approach is heuristic and reveals phonon picture explicitly within the heat transport process. The results for harmonic and anharmonic lattices are compared with numerical calculations from Green-Kubo formula. The consistency between derivation and simulation strongly supports that effective (renormalized) phonons are energy carriers in anharmonic lattices although there exist some other excitations such as solitons and breathers.Comment: 4 pages, 3 figures. accepted for publication in JPS

    Multi-scale analysis of lung computed tomography images

    Get PDF
    A computer-aided detection (CAD) system for the identification of lung internal nodules in low-dose multi-detector helical Computed Tomography (CT) images was developed in the framework of the MAGIC-5 project. The three modules of our lung CAD system, a segmentation algorithm for lung internal region identification, a multi-scale dot-enhancement filter for nodule candidate selection and a multi-scale neural technique for false positive finding reduction, are described. The results obtained on a dataset of low-dose and thin-slice CT scans are shown in terms of free response receiver operating characteristic (FROC) curves and discussed.Comment: 18 pages, 12 low-resolution figure

    Detection of prions in skin punch biopsies of Creutzfeldt–Jakob disease patients

    Get PDF
    Prion real-time quaking-induced conversion (RT-QuIC) is an ultrasensitive assay detecting pathological aggregates of misfolded prion protein in biospecimens. We studied 71 punch biopsy skin samples of 35 patients with Creutzfeldt–Jakob disease (CJD), including five assessed in vitam. The results confirmed the high value of skin prion RT-QuIC for CJD diagnosis (89% sensitivity and 100% specificity) and support its use in clinical practice. Preliminary data based on a limited number of cases suggest that prion-seeding activity in the skin varies according to the prion strain, being higher in sporadic CJD subtypes linked to the V2 strain (VV2 and MV2K) than in typical CJDMM1

    Sensory-Adapted Dental Environment for the Treatment of Patients with Autism Spectrum Disorder

    Get PDF
    Purpose: The importance of dental care and oral hygiene is often underestimated in people with autism spectrum disorder (ASD). Comorbidity with dental anxiety is greater in ASD subjects who also show unusual reactions to sensory stimuli. The aim of our study was to assess the efficacy for a sensory-adapted environment and targeted methods in reducing anxiety and positively influencing cooperation in children with ASD during a dental examination or specific treatments. Material and methods: The sample consisted of 50 Italian children with a diagnosis of ASD (36 males and 14 females; aged 9–10 years) presenting with mild intellectual disability (ID) and verbal language skills. The subjects enrolled in the study had at least two decayed teeth and all were treated in two different dental environments: regular dental environment (RDE) and sensory-adapted dental environment (SADE). Results: 20% of the sample was successfully treated in RDE, while 68% of subjects were successfully treated in SADE. Conclusions: Results suggest that a sensory-adapted environment positively affects the therapeutic dental treatment in patients with ASD and reaffirm that sensory dysregulation in children with ASD is a crucial factor influencing the successful outcome of oral care

    Simulation of dimensionality effects in thermal transport

    Full text link
    The discovery of nanostructures and the development of growth and fabrication techniques of one- and two-dimensional materials provide the possibility to probe experimentally heat transport in low-dimensional systems. Nevertheless measuring the thermal conductivity of these systems is extremely challenging and subject to large uncertainties, thus hindering the chance for a direct comparison between experiments and statistical physics models. Atomistic simulations of realistic nanostructures provide the ideal bridge between abstract models and experiments. After briefly introducing the state of the art of heat transport measurement in nanostructures, and numerical techniques to simulate realistic systems at atomistic level, we review the contribution of lattice dynamics and molecular dynamics simulation to understanding nanoscale thermal transport in systems with reduced dimensionality. We focus on the effect of dimensionality in determining the phononic properties of carbon and semiconducting nanostructures, specifically considering the cases of carbon nanotubes, graphene and of silicon nanowires and ultra-thin membranes, underlying analogies and differences with abstract lattice models.Comment: 30 pages, 21 figures. Review paper, to appear in the Springer Lecture Notes in Physics volume "Thermal transport in low dimensions: from statistical physics to nanoscale heat transfer" (S. Lepri ed.
    corecore